A New Triterpenoid Saponin from Isolatocereus dumortieri

Kaoru Kinoshita,[†] Kiyotaka Koyama,[†] Kunio Takahashi,^{*,†} Norio Kondo,[‡] and Hiroshi Yuasa[‡]

Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose-shi, Tokyo 204-8588, Japan, and Research Institute of Evolutionary Biology, 2-4-28, Kamiyoga, Setagaya-ku, Tokyo 158-0098, Japan

Received August 6, 1999

A new triterpenoid saponin, named dumortierinoside A, was isolated from *Isolatocereus dumortieri*. The structure was determined as dumortierigenin 3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-glucopyranosyl(1 \rightarrow 2)- β -D-glucuronopyranoside (1) on the basis of NMR and mass spectroscopy.

In our previous studies on triterpene sapogenins of several cacti, we have reported some known and new compounds.^{1–3} Some triterpene sapogenins from cacti showed antinociceptive activities⁴ and antitumor promotion actions.⁵ Djerasii and co-workers studied triterpenoid sapogenins of cacti and reported the structure of dumortierigenin from *Lemaireocereus dumortieri* Br. & R. (=*Isolatocereus dumortieri* Backbg.) in 1956.⁶ From the same cactus, two triterpene sapogenins, dumortierigenin and a new compound, pachanol D, possessing a new skeletal type named pachanane, were isolated in our course of study.⁴ This report describes the isolation and characterization of a new saponin named dumortierinoside A, from the MeOH extract of the cactus.

Dry *I. dumortieri* was extracted with $CHCl_3$ and then repeatedly with MeOH. The MeOH extract was subjected to column chromatography on Si gel to afford a new triterpenoid saponin, which has been named dumortierinoside A (1).

Dumortierinoside A (1), a colorless powder, had a molecular formula of C₄₈H₇₄O₁₉, which was determined from its negative ion HRFABMS and confirmed by ¹³C NMR and DEPT analysis. The IR spectrum of **1** shows absorptions at 3400 cm^{-1} (hydroxyl) and 1760 cm^{-1} (five-membered lactone). The ¹³C NMR and DEPT spectra of 1 allowed assignment of 30 of the 48 carbon signals to the aglycone part and 18 to the sugar moiety. The ¹H and ¹³C NMR spectra of 1 (measured at 60 °C) suggested the presence of three sugar residues, as evidenced by three anomeric carbon signals at δ 101.2, 101.8, and 104.5. A carbonyl carbon at δ 173.0 suggested the presence of a uronic acid. Acid hydrolysis in 3.5% HCl for 2.5 h at 110 °C afforded dumortierigenin, identified by TLC and comparison with the published spectral data,² and three sugar residues, two of which were confirmed by TLC as glucose and rhamnose. Since the ¹³C NMR spectrum of **1** showed the presence of a carbonyl group consistent with a glucuronic or a galacturonic acid, 1 was converted to its methyl ester (1a) by treatment with CH_2N_2 . The ¹H and ¹³C NMR spectra of **1a** shows three anomeric carbon signals at δ 101.7, 101.9, and 105.3 and three anomeric proton signals at δ 4.98 (d, J = 7.2 Hz), 5.86 (d, J = 7.7 Hz), and 6.44 (br s). To confirm the identity of the individual sugars and to determine the sequence of the oligosaccharide chain, unambiguous ¹H and ¹³C NMR assignments were made by combination of the 1D homo-decoupling experiment, NOE difference spectra,

[†] Meiji Pharmaceutical University

residue having a carboxyl group (δ 170.6) was considered to be a glucuronic acid on the basis of the following data. From HMQC and ${}^{2}J$ and ${}^{3}J$ HMBC experiments, the carbonyl carbon at δ 170.6 was assigned to C-6', and the methine protons at δ 4.48 (d, J = 8.9 Hz), δ 4.30 (t, J = 8.9Hz), δ 4.54 (t, J = 8.9 Hz), and δ 4.51 (dd, J = 8.9, 7.2 Hz) were assigned to H-5', H-4', H-3', and H-2', respectively. In the ¹H NMR, the coupling constants showed transdiaxial relationships between H-1' and H-2', H-2' and H-3', H-3' and H-4', and H-4' and H-5'. NOESY spectra showed significant through-space interactions between H-1' and H-3', H-1' and H-5', H-3' and H-5', and H-2' and H-4' (see Figure 1). The above information suggested this sugar was β -D-glucuronopyranose. Since glucose and rhamnose were identified on TLC by acid hydrolysis of 1, the methylene carbon at δ 63.3, having HMQC correlation with δ 4.30 and 4.50, was assigned to the C-6" of the glucose. From ¹H-¹H COSY and ¹H homo-decoupling spectra, δ 3.85 (m), δ 4.06 (t, J = 8.8 Hz), and δ 4.22 (t, J = 8.8 Hz) were assigned to H-5"-H-3", respectively. In the NOE difference spectra, enhancement of the methine protons at δ 3.85 (H-5") and δ 4.22 (H-3") was observed by irradiation of the anomeric proton at δ 5.86 (d, J = 7.7 Hz); thus δ 5.86 (d, J = 7.7 Hz) was assigned to H-1" of glucose (see Figure 1). Since the coupling was detected at δ 4.28 (dd, J = 8.8, 7.7 Hz) in the ¹H homo-decoupling spectrum by irradiation at H-1" (δ 5.86), the proton at δ 4.28 was assigned to H-2". The coupling patterns of H-2" (δ 4.28) and H-4" (δ 4.06) suggested trans-diaxial relationships between H-1" and H-2", H-2" and H-3", H-3" and H-4", and H-4" and H-5". NOESY spectra showed significant through-space interactions between H-1" and H-3", H-1" and H-5", H-3" and H-5", and H-2" and H-4" (Figure 1). The above information and HMBC correlations confirmed this sugar was β -Dglucopyranose. For the third sugar moiety, the methyl protons at δ 1.75 (3H, d, J = 6.1 Hz) were considered to be H-6" of rhamnose. From ¹H-¹H COSY and ¹H homodecoupling spectra, the methine proton at δ 5.02 (m), δ 4.35 (t, J = 9.2 Hz), δ 4.68 (dd J = 9.2, 3.4 Hz), δ 4.79 (dd, J =3.4, 1.5 Hz), and δ 6.44 (d, J = 1.5 Hz) were assigned to H-5^{'''}-H-1^{'''}, respectively. In the NOESY spectrum, the methine proton (H-5"") at δ 5.02 (m) showed correlation with the methine proton (H-3^{'''}) at δ 4.68 (dd J = 9.2, 3.4 Hz). In HMQC spectra, there were cross-peaks between the methyl protons at δ 1.75 (H-6^{'''}) and the methyl carbon at δ 19.0, the methine proton at δ 5.02 (H-5''') and the methine carbon at δ 69.4, and the anomeric proton at δ 6.44 and the anomeric carbon at δ 101.7. Furthermore, in ²*J* and ³*J* HMBC experiments, the methyl protons at δ 1.75

¹H-¹H COSY, HMQC, and HMBC. The unknown sugar

10.1021/np9903907 CCC: \$19.00 © 2000 American Chemical Society and American Society of Pharmacognosy Published on Web 03/24/2000

^{*} To whom correspondence should be addressed. Phone and Fax: (81) 424-95-8912. E-mail: diamonds@my-pharm.ac.jp.

[‡] Research Institute of Evolutionary Biology.

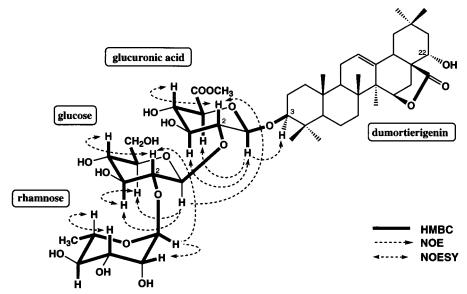


Figure 1. NOE and HMBC of dumortierinoside A methyl ester.

Table 1.	¹³ C and ¹ H	NMR Spectral	Data of 1a in	Pyridine- d_5
----------	------------------------------------	--------------	---------------	-----------------

position	δ $^{13}\mathrm{C}$	δ ¹ H	position	δ $^{13}\mathrm{C}$	δ ¹ H
1	39.1	1.42 (m)	Glc A		
2	26.4	1.75 (m), 2.05 (m)	1	105.3	4.98 (d, $J = 7.2$ Hz)
3	89.8	3.30 (dd, $J = 12.1$, 4.4 Hz)	2	78.3	4.51 (dd, $J = 8.9$, 7.2 Hz)
4	39.6		2 3	78.6	4.54 (t, $J = 8.9$ Hz)
5	56.0	0.81 (br d, $J = 9.2$ Hz)	4	73.2	4.30 (t, $J = 8.9$ Hz)
6	18.2	1.37 (m), 1.55 (m)	5	76.8	4.48 (d, $J = 9.8$ Hz)
7	33.7	1.56 (m)	6	170.6	
8	40.6		COOMe	52.0	3.71 (s)
9	48.5	1.55 (m)	Glc		
10	36.8		1	101.9	5.86 (d, $J = 7.7$ Hz)
11	23.6	1.81 (m)	2	78.4	4.28 (dd, $J = 8.8$, 7.7 Hz)
12	127.9	5.44 (t-like, $J = 3.4$ Hz)	3	79.4	4.22 (t, $J = 8.8$ Hz)
13	138.2		2 3 4 5	72.7	4.06 (t, $J = 8.8$ Hz)
14	46.6		5	77.8	3.85 (m)
15	80.0	4.64 (d, $J = 5.7$ Hz)	6	63.3	4.30 (dd, $J = 11.3$, 2.7 Hz)
16	26.9	2.42 (d, $J = 12.4$ Hz),			4.50 (dd, $J = 11.3$, 2.7 Hz)
		2.72 (dd, $J = 12.4$, 5.7 Hz)	Rha		
17	52.5		1	101.7	6.44 (d, $J = 1.5$ Hz)
18	42.5	2.65 (br d, $J = 14.0$ Hz)	2 3	72.5	4.79 (dd, $J = 3.4$, 1.5 Hz)
19	46.1	1.56 (m)	3	72.6	4.68 (dd, $J = 9.2$, 3.4 Hz)
20	31.8		4	74.2	4.35 (t, $J = 9.2$ Hz)
21	44.9	1.52 (m), 1.88 (m)	5	69.4	5.02 (m)
22	65.3	4.62 (dd, $J = 11.3$, 5.7 Hz)	6	19.0	1.75 (d, $J = 6.1$ Hz)
23	28.3	1.34 (s)			
24	16.7	1.06 (s)			
25	16.1	0.81 (s)			
26	19.8	1.21 (s)			
27	25.2	1.23 (s)			
28	179.6	• *			
29	33.0	0.96 (s)			
30	24.9	0.98 (s)			

(H-6"') and the anomeric proton at δ 6.44 (H-1"') showed correlation with the methine carbon at δ 69.4. The above evidence suggested this sugar was α -L-rhamnopyranoside. Therefore, the three sugars were confirmed as rhamnose, glucose, and glucuronic acid.

The aglycone portion was identified as dumortierigenin by the HMQC and HMBC correlations of **1a**. Dumortierigenin has two hydroxyl groups at C-3 and C-22, either of which can link with the sugar. The ¹³C NMR signals due to the sapogenol moiety showed a downfield shift by 11.9 ppm at C-3 (δ 89.8) in comparison with that of dumortierigenin (δ 77.9),⁴ but C-22 (δ 80.0) showed no downfield shift. The linkage of the sugar units at C-3 and the sequence of the sugar chains were established by the following combination of HMQC, HMBC, phase-sensitive NOESY, and NOE difference spectra. The ²*J* and ³*J*HMBC spectrum of **1a** revealed a cross-peak between the anomeric proton (H-1') of glucuronic acid at δ 4.98 and the C-3 methine carbon at δ 89.8. In the difference NOE spectrum, enhancement of the methine proton at δ 3.30 (dd, *J* = 12.4, 4.1 Hz) was observed by irradiation of the anomeric proton (H-1') of glucuronic acid at δ 4.98. These results suggested the oligosaccharide chain was connected to this position. The negative ion HRFABMS showed fragment peaks at *m*/*z* 807 due to ([M–H]-rhamnose), *m*/*z* 645 due to ([M–H]-rhamnose-glucose), and *m*/*z* 469 due to ([M–H]-rhamnose-glucose), and *m*/*z* 469 due to ([M–H]-rhamnose-glucose), and the proton (H-2') of glucuronic acid at δ 4.51 and the proton (H-2') of glucose at δ 4.30 show HMBC correlations with the anomeric carbons of glucose (δ 101.9) and rhamnose (δ 101.7), respectively. In

addition, NOE enhancements were observed for the H-2' of glucuronic acid at δ 4.51 and the H-2" of glucose at δ 4.28, on irradiation of the anomeric protons of glucose at δ 5.86 and rhamnose at δ 6.44, respectively. From the above evidence, the structure of 1 could be elucidated as dumortierigenin 3-O- α -L-rhamnopyranosyl(1 \rightarrow 2)- β -D-glucopyranosyl(1 \rightarrow 2)- β -D-glucuronopyranoside.

Experimental Section

General Experimental Procedures. Melting points were determined on a Yanagimoto MP micromelting point apparatus. The IR spectra were measured with a JASCOA-102 IR spectrophotometer. The ¹H and ¹³C NMR spectra were recorded using a JEOL GSX-400 (¹H 400 and ¹³C 100 MHz) and a JEOL JNM-LA500 (1H 500 and 13C 125 MHz) spectrometer in pyridine- d_5 . Chemical shifts are recorded in ppm (δ) in pyridine- d_5 and referenced to residual solvent peaks at δ 7.20 and δ 135.5, respectively. The $[\alpha]_D$ values were determined with a JASCO DIP-140 digital polarimeter. CC was carried out on 70-230 mesh silica gel (Merck). HPLC was performed using an SSC-3100-J pump with an Oyo-Bunko Uvilog 7 UV detector. The negative ion HRFABMS and EIMS spectra were obtained using a Fisons Analytical VG Autospec.

Plant Material. I. dumorrtieri Backbg. (Cactaceae) was cultivated originally at the Research Institute of Evolutionary Biology (Setagaya-ku, Tokyo, Japan), Izu National History Park (Itoh, Shizuoka, Japan), and the Japan Cactus Planning Co. (Fukushima City, Fukushima, Japan). These cacti were identified by Drs. N. Kondo and H. Yuasa. A voucher specimen is deposited at the Research Institute of Evolutionary Biology.

Extraction and Isolation. Dry I. dumortieri was extracted with CHCl₃ to remove free triterpenes and then repeatedly with MeOH. The MeOH extract (4.23 g) was subjected to column chromatography on Si gel using stepwise gradient $(CHCl_3 - MeOH - H_2O 30:10:0.5 \rightarrow 30:12:2 \rightarrow 30:15:3)$ 30:20:5) and yielded a white powder, named dumortierinoside A (1, 272.9 mg) by precipitation in MeOH. 1 (55 mg) was

methylated with diazomethane (CH₂N₂) and purified by column chromatography on Si gel using stepwise gradient $(CHCl_3 - MeOH - H_2O$ 30:10:0.5 \rightarrow 30:12:2 \rightarrow 30:15:3 30:20:5) to yield dumortierinoside A methyl ester, 1a (24.3 mg).

Dumortierinoside A (1): white amorphous powder (272.9 mg); mp > 300 °C; $[\alpha]^{20}$ _D - 45.41° (*c* 0.011, MeOH); IR ν_{max} (KBr) 3400, 2950, 1770 cm⁻¹; negative ion HRFABMS m/z 953.4748 $([M-H]^-)$ calcd for C₄₈H₇₄O₁₉, 953.4746; negative ion FABMS m/z 953 ([M-H]⁻), 807 ([M-H]⁻ - Rha), 645 (([M-H]⁻ Rha-Glc), 469 (aglycone moiety – H).

Dumortierinoside A methyl ester (1a): white amorphous powder, mp 215–218 °C (dec); IR $\nu_{\rm max}$ (KBr) 3400, 2950, 1755, 1630, 1385, 1080, 1040 cm⁻¹; ¹H and ¹³C NMR in pyridine- d_6 , see Table 1.

Acid Hydrolysis of Dumortierinoside A (1). Compound 1 (33.4 mg) was hydrolyzed with 3.5% HCl (15 mL) at 110 °C for 2.5 h. The CHCl₃-soluble fraction was subjected to column chromatography on Si gel and purified by HPLC over Si gel (Nucleosil 50-5, 1×25 cm), eluting with CHCl₃–MeOH (100: 1), resulting in the isolation of the aglycone (9.0 mg), which was identical with dumortierigenin with respect to the TLC and ¹H and ¹³C NMR spectra in pyridine- d_5 .

Acknowledgment. This work was supported in part by a Sasagawa Scientific Research Grant from The Japan Science Society.

References and Notes

- (1) Kinoshita, K.; Koyama, K.; Takahashi, K.; Kondo, N.; Yuasa, H. J. Nat. Prod. 1992, 55, 953–955.
- Nat. Prod. 1992, 55, 953–955.
 (2) Kinoshita, K.; Takizawa, T.; Koyama, K.; Takahashi, K.; Kondo, N.; Yuasa, H.; Kawai, K. J. Nat. Prod. 1995, 58, 1739–1744.
 (3) Yang, Y.; Kinoshita, K.; Koyama, K.; Takahashi, K.; Kondo, N.; Yuasa, H. J. Nat. Prod. 1998, 61, 456–460.
 (4) Kinoshita, K.; Akiba, M.; Saitoh, M.; Yang, Y.; Koyama, K.; Takahashi, K.; Kondo, N.; Yuasa, H. Pharm. Biol. 1998, 36, 50–57.
 (5) Kinoshita, K.; Korama, K.; Takahashi, K.; Burtomotiving

- (5) Kinoshita, K.; Koyama, K.; Takahashi, K.; Nishino, H. Phytomedicine 1999, 6, 77-81.
- (6) Djerasii, C.; Robinson, C. H.; Thomas, D. B. J. Am. Chem. Soc. 1956, 78, 5685-5691.

NP9903907